WEEKLY TEST SOLUTION OYJ MATHEMATICS Date : 13 Oct 2019

MATHEMATICS

31. (d) $x=3 \pm\left(\frac{-2}{\sqrt{17}}\right)(\sqrt{17}), y=-6 \pm\left(\frac{3}{\sqrt{17}}\right)(\sqrt{17})$
and $z=10 \pm\left(\frac{-2}{\sqrt{17}}\right)(\sqrt{17})$.
Hence the required co-ordinates are $(1,-3,8)$ or $(5,-9,12)$.
32. (a) Centroid $\equiv\left(\frac{\sum x}{4}, \frac{\sum y}{4}, \frac{\sum z}{4}\right)=(1,2,-1)$

$$
\Rightarrow a=1, b=5, c=-9 ; \therefore \sqrt{a^{2}+b^{2}+c^{2}}=\sqrt{107}
$$

33. (c) Given plane is $x+y+z-3=0$. From point P and Q draw $P M$ and $Q N$ perpendicular on the given plane and $Q R \perp M P$.
$|M P|=\frac{0+1+0-3}{\sqrt{1^{2}+1^{2}+1^{2}}}=\frac{-2}{\sqrt{3}}, \quad|N Q|=\frac{-2}{\sqrt{3}}$

$$
\begin{aligned}
& |P Q|=\sqrt{(0-0)^{2}+(0-1)^{2}+(1-0)^{2}}=\sqrt{2} \\
& |R P|=|M P|-|M R|=|M P|-|N Q|=0 \\
& \therefore|N M|=|Q R|=\sqrt{P Q^{2}-R P^{2}}=\sqrt{(\sqrt{2})^{2}-0}=\sqrt{2} .
\end{aligned}
$$

34. (b) Let the cube be of side 'a'
$O(0,0,0), D(a, a, a), B(0, a, 0), G(a, 0, a)$
Then equation of $O D$ and $B G$ are $\frac{x}{a}=\frac{y}{a}=\frac{z}{a}$ and $\frac{x}{a}=\frac{y-a}{-a}=\frac{z}{a}$ respectively.

Hence, angle between $O D$ and $B G$ is
$\cos ^{-1}\left(\frac{a^{2}-a^{2}+a^{2}}{\sqrt{3 a^{2}} \cdot \sqrt{3 a^{2}}}\right)=\cos ^{-1}\left(\frac{1}{3}\right)$.
Note: Students should remember this question as a fact.
35. (a) Line passing through the point $(1,2,-4)$ is $\frac{x-1}{l}=\frac{y-2}{m}=\frac{z+4}{n}$

Now, according to question, $31-16 m+7 n=0$ and $31+8 m-5 n=0$
Hence required line is, $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}$.
36. (d) We have, $\frac{x-1}{1}=\frac{y+3}{-\lambda}=\frac{z-1}{\lambda}=s$
and $\quad \frac{x-0}{1 / 2}=\frac{y-1}{1}=\frac{z-2}{-1}=t$
Since, lines are co planar then
$\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ I_{1} & m_{1} & n_{1} \\ \mathrm{I}_{2} & \mathrm{~m}_{2} & \mathrm{n}_{2}\end{array}\right|=0 \Rightarrow\left|\begin{array}{ccc}-1 & 4 & 1 \\ 1 & -\lambda & \lambda \\ 1 / 2 & 1 & -1\end{array}\right|=0$
On solving, $\lambda=-2$.
37. (b) Let D be the foot of perpendicular drawn from $P(1,0,3)$ on the line $A B$ joining $(4,7,1)$ and $(3,5,3)$.

If D divides $A B$ in ratio $\lambda: 1$ then $D=\left(\frac{3 \lambda+4}{\lambda+1}, \frac{5 \lambda+7}{\lambda+1}, \frac{3 \lambda+1}{\lambda+1}\right)$
$A(4,7,1) \frac{\lambda}{D} \quad 1 \quad \mathrm{P}(3,5,3)$
D.r's of PD are $2 \lambda+3,5 \lambda+7,-2$
D.r's of AB are $-1,-2,2$
$\because \mathrm{PD} \perp \mathrm{AB} ; \therefore-(2 \lambda+3)-2(5 \lambda+7)-4=0 \Rightarrow \lambda=\frac{-7}{4}$
Putting the value of λ in (i), we get the point $D\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$.
38. (b) Any point on $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}=\lambda$ is,
$(2 \lambda+1,3 \lambda-1,4 \lambda+1) ; \lambda \in \mathrm{R}$
Any point on $\frac{\mathrm{x}-3}{1}=\frac{\mathrm{y}-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}=\mu$ is,
$(\mu+3,2 \mu+\mathrm{k}, \mu) ; \mu \in \mathrm{R}$
The given lines intersect if and only if the system of equations (in λ and μ)

$$
\begin{align*}
& 2 \lambda+1=\mu+3 \tag{i}\\
& 3 \lambda-1=2 \mu+\mathrm{k} \tag{ii}\\
& 4 \lambda+1=\mu \tag{iii}
\end{align*}
$$

has a unique solution.
Solving (i) and (iii), we get $\lambda=\frac{-3}{2}, \mu=-5$
From (ii), we get $\frac{-9}{2}-1=-10+k \Rightarrow k=\frac{9}{2}$.
39. (b) $\because P A^{2}-P B^{2}=k$
$\therefore \quad\left[(x-2)^{2}+(y-3)^{2}+(z-4)^{2}\right]$
$-\left[(x+2)^{2}+(y-5)^{2}+(z+4)^{2}\right]=k$
or $-8 x+4 y-16 z-16=k$, which is the equation of a plane.
40. (a) $I+2 m+2 n=0,3 I+3 m+2 n=0, I^{2}+m^{2}+n^{2}=1$, we get I, m, n from these equations and then putting the values in $1(x-1)+m(y+3)+n(z+2)=0$, we get the required result.
Trick: Checking conversely,
$2(1)-4(-3)+3(-2)-8=0$,
So, it passes through given point.

$$
1(2)+2(-4)+2(3)=0,
$$

So, it is perpendicular to $x+2 y+2 z=5$.

$$
3(2)+3(-4)+2(3)=0,
$$

So, it is perpendicular to $3 x+3 y+2 z=8$.
41. (b) The plane by intercept form is $\frac{x}{1}+\frac{y}{1}+\frac{z}{c}=1$.
D.r's of normal are $1,1, \frac{1}{c}$ and of given plane are $1,1, \quad 0$. Now, $\cos \frac{\pi}{4}=\frac{1 \cdot 1+1 \cdot 1+\frac{1}{c} \cdot 0}{\left(\sqrt{\frac{1}{c^{2}}+2}\right) \sqrt{2}} \Rightarrow$ $\frac{1}{\sqrt{2}}=\frac{2}{\left(\sqrt{\frac{1}{c^{2}}+2}\right) \sqrt{2}}$
$\Rightarrow \frac{1}{\mathrm{c}^{2}}+2=4 \Rightarrow \mathrm{c}^{2}=\frac{1}{2} \Rightarrow \mathrm{c}=\frac{1}{\sqrt{2}}$
\therefore D.r's of required normal are $1,1, \sqrt{2}$.
42. (c) Obviously, $4(2)+4(3)-k(4)=0 \Rightarrow k=5$.
43. (a) Any point on the line $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}$ is $(r+3,2 r+4,2 r+5)$ which satisfies the plane.

So, $r+3+2 r+4+2 r+5=17 \Rightarrow r=1$.
\therefore The point is $(4,6,7)$.
Hence required distance is $\sqrt{1^{2}+2^{2}+2^{2}}=3$.
44. (b) We have, $P_{1}=\left|\frac{3 \times 2-6 \times 3+2 \times 4+11}{\sqrt{3^{2}+(-6)^{2}+(2)^{2}}}\right|=1$

$$
P_{2}=\left|\frac{3 \times 1-6 \times 1+2 \times 4+11}{\sqrt{3^{2}+(-6)^{2}+(2)^{2}}}\right|=\frac{16}{7}
$$

So, equation whose roots are P_{1} and P_{2} is,

$$
7 P^{2}-23 P+16=0
$$

45. (d)

Requaried distance $=\mathrm{KL}$
$=\sqrt{\left(a-\frac{a}{2}\right)^{2}+0^{2}+\left(0-\frac{a}{2}\right)^{2}}=\frac{a}{\sqrt{2}}$.

